metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yao-Cheng Shi,* Bei-Bei Zhu and Rong Guo

School of Chemistry, Yangzhou University, 130 XiMenWai Street, Yangzhou 225002, People's Republic of China

Correspondence e-mail: yzssyc@yzcn.net

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.008 Å R factor = 0.035 wR factor = 0.092 Data-to-parameter ratio = 16.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

μ_2 -Diphosphorus(P—P)-1: $2\kappa^2 P, P$;1: $2\kappa^2 P', P'$ bis[η^5 -ethoxycarbonylcyclopentadienyl]bis(carbonyl-1 κC)bis(carbonyl- $2\kappa C$)dimolybdenum(I)(Mo—Mo)]

The title compound, $[Mo_2(P_2)(CO)_4(C_8H_9O_2)_2]$, which was synthesized by refluxing a toluene solution of $[(\eta^5-CH_3CH_2O_2CC_5H_4)_2Mo_2(CO)_6]$ and P₄ under N₂, has a tetrahedral $[Mo_2P_2]$ core with a transverse coordinated P₂ ligand and an $[(\eta^5-CH_3CH_2O_2CC_5H_4)Mo(CO)_2]$ moiety. The P–P distance of the coordinated P₂ ligand is 2.089 (2) Å. Received 24 March 2005 Accepted 5 April 2005 Online 9 April 2005

Comment

The study of compounds with substituent-free acyclic and cyclic phosphorus (and homologous ligands) is a new and interesting research area (Davies *et al.*, 2000; Bai *et al.*, 2002). As part of a systematic investigation of the chemistry of cyclopentadienyl-functionalized dimolybdenum compounds, the title compound, (I), has been synthesized (Shi, 2004*a*,*b*) and its crystal structure is reported here (Fig. 1).

The molecule of (I) has a tetrahedral $[Mo_2P_2]$ core with a transverse coordinated P₂ ligand and an $[(\eta^5-CH_3CH_2O_2-CC_5H_4)Mo(CO)_2]$ moiety. The Mo–Mo distance in (I) (Table 1) is close to the values [3.022 (1), 3.0161 (8) and 3.0157 (9) Å, respectively] observed in the compounds $[(\eta^5-C_5H_4R)_2Mo_2(CO)_4(\mu,\eta^2-P)_2]$ [(II) with R = H (Scherer *et al.*, 1984); (III) with $R = CH_3CO$ and (IV) with $R = CH_3O_2C$ (Shi, 2004*a*)]. The P–P distance in (I) is slightly longer than those in (II) and (III) [2.079 (2) and 2.074 (2) Å, respectively], but close to the value of 2.084 (2) Å in (IV).

As in (II), (III) and (IV), each Mo atom in (I) forms two different Mo–P bonds with two P atoms, and the angles in the bridging region are similar to those in (II), (III) and (IV). However, the dihedral angles between the functional groups and the corresponding C_5H_4 rings are different. The dihedral angles are 4.5 (5) and 4.5 (5)° in (III), and 1.3 (5) and 7.2 (5)° in (IV), while in (I), the values are 4.7 (4) and 6.6 (4)°.

In each of the crystal structures of (I), (III) and (IV), weak $C-H\cdots O$ hydrogen bonding is present, and in each case the C-H donors arise from C_5H_4 rings [see Table 2 for the hydrogen-bond geometry in (I)]. For (III), the hydrogen bonds are of the type $C-H\cdots OC$ [$C\cdots O$ 3.354 (5) and 3.392 (5) Å; $C-H\cdots O$ 139 and 139°], whereas for (IV), $C-H\cdots O=C$ hydrogen bonds are present [$C\cdots O$ 3.455 (7) and 3.394 (8) Å and $C-H\cdots O$ 152 and 149° for one C_5H_4 ring,

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The molecular structure of (I), shown with 30% probability displacement ellipsoids.

and C···O 3.438 (8) and 3.348 (8) Å and C–H···O 150 and 156° for the other C₅H₄ ring]. The hydrogen bonding in compound (II) [R = H] is not discussed here, as the H-atom positions are not available in the deposited data.

Experimental

A solution of $[(\eta^{5}-CH_{3}CH_{2}O_{2}CC_{3}H_{4})_{2}Mo_{2}(CO)_{6}]$ (1 mmol) and white phosphorus P₄ (1 mmol) in toluene (40 ml) was refluxed under N₂ for 2 h. After evaporation of the solvent *in vacuo*, the resulting residue was chromatographed on silica-gel plates using CH₂Cl₂– petroleum ether (4:1 ν/ν) as eluent. The orange band was collected and further recrystallized from deoxygenated CH₂Cl₂–petroleum ether to afford the title compound as red crystals (0.237 g, 37% yield; m.p. 403.5–404.6 K). Spectroscopic analysis: ¹H NMR (600 MHz, CDCl₃, δ , p.p.m.): 5.69, 5.33 (4H, *t*, 4H, *t*, 2C₅H₄), 4.28–4.31 (4H, *q*, *J* = 7.14 Hz, 2OCH₂), 1.32–1.34 (6H, *t*, *J* = 7.14 Hz, 2CH₃); ¹³C[¹H] NMR (600 MHz, CDCl₃, δ , p.p.m.): 223.49 (C \equiv O), 164.28 (C=O), 90.03, 88.35, 87.75 (C₅H₄), 61.41 (CH₂), 14.23 (CH₃); ³¹P[¹H] NMR (600 MHz, CDCl₃, δ , p.p.m.): –30.59; IR (KBr, ν , cm⁻¹): 1995, 1975, 1920 (ν s, C \equiv O), 1708 (ν s, C=O).

Crystal data

S = 1.06

4733 reflections

291 parameters

$[Mo_2(P_2)(CO)_4(C_8H_9O_2)_2]$	$D_x = 1.840 \text{ Mg m}^{-3}$
$M_r = 640.16$	Mo $K\alpha$ radiation
Monoclinic, C2/c	Cell parameters from 923
a = 25.705 (9) Å	reflections
b = 7.912 (4) Å	$\theta = 2.7 - 26.3^{\circ}$
c = 24.636 (8) Å	$\mu = 1.27 \text{ mm}^{-1}$
$\beta = 112.742 \ (8)^{\circ}$	T = 293 K
$V = 4621 (3) \text{ Å}^3$	Block, red
Z = 8	$0.14 \times 0.12 \times 0.10 \ \mathrm{mm}$
Data collection	
Bruker SMART 1000 CCD area	4733 independent reflections
detector diffractometer	3509 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.047$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.5^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -31 \rightarrow 32$
$T_{\rm min} = 0.812, T_{\rm max} = 0.874$	$k = -8 \rightarrow 9$
12 842 measured reflections	$l = -30 \rightarrow 15$
Refinement	
Refinement on F^2	H-atom parameters constrain
$R[F^2 > 2\sigma(F^2)] = 0.035$	$w = 1/[\sigma^2(F_r^2) + (0.041P)^2]$
$wR(F^2) = 0.002$	where $P = (F^2 + 2F^2)/3$

H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.041P)^2]$
where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.63 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.63 \ {\rm e} \ {\rm \AA}^{-3}$

Selected geometric parameters (Å, $^\circ).$

Mo1-Mo2	3.0170 (11)	P1-P2	2.089 (2)
Mo1-P1	2.5577 (14)	C1-O1	1.143 (6)
Mo1-P2	2.4700 (14)	C2-O2	1.139 (6)
Mo2-P1	2.4695 (14)	C3-O3	1.146 (6)
Mo2-P2	2.5502 (15)	C4-O4	1.150 (6)
	10.06 (5)		(7.44.(7)
P1-Mo1-P2	49.06 (5)	P2-P1-M02	67.44 (5)
P1-Mo1-Mo2	51.79 (3)	Mo1-P2-Mo2	73.86 (4)
P2-Mo1-Mo2	54.29 (4)	P1-P2-Mo1	67.66 (5)
P1-Mo2-Mo1	54.47 (3)	P1-P2-Mo2	63.41 (6)
P2-Mo2-Mo1	51.85 (3)	O1-C1-Mo1	176.3 (5)
P1-Mo2-P2	49.15 (5)	O2-C2-Mo1	175.3 (4)
Mo1-P1-Mo2	73.73 (4)	O3-C3-Mo2	175.8 (5)
P2-P1-Mo1	63.28 (5)	O4-C4-Mo2	175.6 (5)

Table 2	
Hydrogen-bond geomet	try (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C6-H6\cdots O5^{i}$	0.93	2.59	3.477 (7)	159
$C7-H7\cdot\cdot O7^{n}$	0.93	2.60	3.441 (7)	151
C14−H14···O7 ⁱⁱ	0.93	2.38	3.262 (7)	158

Symmetry codes: (i) $x + \frac{1}{2}, y + \frac{1}{2}, z$; (ii) $-x, y, -z + \frac{1}{2}$.

All H atoms were placed in geometrically idealized positions and were included in a riding-model approximation, with C-H = 0.93–0.97 Å and $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$ [1.5 $U_{\rm eq}({\rm C})$ for methyl groups].

Data collection: *SMART* (Bruker, 1998); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1998); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1999) ; software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank Yangzhou University for financial support of this work (grant No. D0009107).

References

- Bai, J.-F., Leiner, E & Scheer, M. (2002). Angew. Chem. Int. Eng. Ed. 41, 783–786.
- Bruker (1998). *SMART* (Version 5.051) and *SAINT* (Versions 5.01). Bruker AXS Inc., Madison, Wisconsin, USA.
- Davies, J. E., Feeder, N., Mays, M. J., Tompkin, P. K. & Woods, A. D. (2000). Organometallics, 19, 984–993.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Scherer, O. J., Sitzmann, H. & Wolmershäuser, G. (1984). J. Organomet. Chem 268, C9–12.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Shi, Y.-C. (2004a). J. Coord. Chem. 57, 393-400.

Shi, Y.-C. (2004b). Polyhedron, 23, 1663–1667.