Acta Crystallographica Section E

Structure Reports Online
 ISSN 1600-5368
 Yao-Cheng Shi,* Bei-Bei Zhu and Rong Guo

μ_{2}-Diphosphorus(P—P)-1:2 $\boldsymbol{\kappa}^{2} P, P ; 1: 2 \kappa^{2} P^{\prime}, P^{\prime}-$ bis[η^{5}-ethoxycarbonylcyclopentadienyl]-bis(carbonyl-1 κ C)bis(carbonyl$2 \kappa C$)dimolybdenum(I)(Mo-Mo)]

School of Chemistry, Yangzhou University, 130 XiMenWai Street, Yangzhou 225002, People's Republic of China

Correspondence e-mail: yzssyc@yzcn.net

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.035$
$w R$ factor $=0.092$
Data-to-parameter ratio $=16.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The title compound, $\left[\mathrm{Mo}_{2}\left(\mathrm{P}_{2}\right)(\mathrm{CO})_{4}\left(\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{2}\right)_{2}\right]$, which was synthesized by refluxing a toluene solution of $\left[\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{CC}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{Mo}_{2}(\mathrm{CO})_{6}\right]$ and P_{4} under N_{2}, has a tetrahedral $\left[\mathrm{Mo}_{2} \mathrm{P}_{2}\right]$ core with a transverse coordinated P_{2} ligand and an $\left[\left(\eta^{5}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{CC}_{5} \mathrm{H}_{4}\right) \mathrm{Mo}(\mathrm{CO})_{2}\right]$ moiety. The $\mathrm{P}-\mathrm{P}$ distance of the coordinated P_{2} ligand is 2.089 (2) \AA.

Comment

The study of compounds with substituent-free acyclic and cyclic phosphorus (and homologous ligands) is a new and interesting research area (Davies et al., 2000; Bai et al., 2002). As part of a systematic investigation of the chemistry of cyclopentadienyl-functionalized dimolybdenum compounds, the title compound, (I), has been synthesized (Shi, 2004a,b) and its crystal structure is reported here (Fig. 1).

(I)

The molecule of (I) has a tetrahedral $\left[\mathrm{Mo}_{2} \mathrm{P}_{2}\right]$ core with a transverse coordinated P_{2} ligand and an $\left[\left(\eta^{5}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}_{2^{-}}\right.\right.$ $\left.\mathrm{CC}_{5} \mathrm{H}_{4}\right) \mathrm{Mo}(\mathrm{CO})_{2}$] moiety. The $\mathrm{Mo}-\mathrm{Mo}$ distance in (I) (Table 1) is close to the values $[3.022$ (1), 3.0161 (8) and 3.0157 (9) A, respectively] observed in the compounds [η^{5} $\left.\mathrm{C}_{5} \mathrm{H}_{4} R\right)_{2} \mathrm{Mo}_{2}(\mathrm{CO})_{4}\left(\mu, \eta^{2}-\mathrm{P}\right)_{2}$] [(II) with $R=\mathrm{H}$ (Scherer et al., 1984); (III) with $R=\mathrm{CH}_{3} \mathrm{CO}$ and (IV) with $R=\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}$ (Shi, 2004a)]. The $\mathrm{P}-\mathrm{P}$ distance in (I) is slightly longer than those in (II) and (III) [2.079 (2) and 2.074 (2) \AA, respectively], but close to the value of 2.084 (2) \AA in (IV).

As in (II), (III) and (IV), each Mo atom in (I) forms two different $\mathrm{Mo}-\mathrm{P}$ bonds with two P atoms, and the angles in the bridging region are similar to those in (II), (III) and (IV). However, the dihedral angles between the functional groups and the corresponding $\mathrm{C}_{5} \mathrm{H}_{4}$ rings are different. The dihedral angles are 4.5 (5) and $4.5(5)^{\circ}$ in (III), and 1.3 (5) and $7.2(5)^{\circ}$ in (IV), while in (I), the values are 4.7 (4) and 6.6 (4).

In each of the crystal structures of (I), (III) and (IV), weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding is present, and in each case the $\mathrm{C}-\mathrm{H}$ donors arise from $\mathrm{C}_{5} \mathrm{H}_{4}$ rings [see Table 2 for the hydrogen-bond geometry in (I)]. For (III), the hydrogen bonds are of the type $\mathrm{C}-\mathrm{H} \cdots \mathrm{OC}[\mathrm{C} \cdots \mathrm{O} 3.354$ (5) and 3.392 (5) $\AA ; \mathrm{C}-\mathrm{H} \cdots \mathrm{O} 139$ and 139°], whereas for (IV), C$\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bonds are present $[\mathrm{C} \cdots \mathrm{O} 3.455$ (7) and 3.394 (8) \AA and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O} 152$ and 149° for one $\mathrm{C}_{5} \mathrm{H}_{4}$ ring,

Received 24 March 2005 Accepted 5 April 2005 Online 9 April 2005

Figure 1
The molecular structure of (I), shown with 30% probability displacement ellipsoids.
and $\mathrm{C} \cdots \mathrm{O} 3.438$ (8) and 3.348 (8) \AA and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O} 150$ and 156° for the other $\mathrm{C}_{5} \mathrm{H}_{4}$ ring]. The hydrogen bonding in compound (II) $[R=\mathrm{H}]$ is not discussed here, as the H -atom positions are not available in the deposited data.

Experimental

A solution of $\left[\left(\eta^{5}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{CC}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{Mo}_{2}(\mathrm{CO})_{6}\right](1 \mathrm{mmol})$ and white phosphorus $\mathrm{P}_{4}(1 \mathrm{mmol})$ in toluene (40 ml) was refluxed under N_{2} for 2 h . After evaporation of the solvent in vacuo, the resulting residue was chromatographed on silica-gel plates using $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ petroleum ether ($4: 1 \mathrm{v} / \mathrm{v}$) as eluent. The orange band was collected and further recrystallized from deoxygenated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-petroleum ether to afford the title compound as red crystals $(0.237 \mathrm{~g}, 37 \%$ yield; m.p. $403.5-404.6 \mathrm{~K}$). Spectroscopic analysis: ${ }^{1} \mathrm{H}$ NMR (600 MHz , CDCl_{3}, δ, p.p.m.): 5.69, $5.33\left(4 \mathrm{H}, t, 4 \mathrm{H}, t, 2 \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.28-4.31(4 \mathrm{H}, q, J=$ $\left.7.14 \mathrm{~Hz}, 2 \mathrm{OCH}_{2}\right), 1.32-1.34\left(6 \mathrm{H}, t, J=7.14 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right),{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, δ, p.p.m.): $223.49(\mathrm{C} \equiv \mathrm{O}), 164.28(\mathrm{C}=\mathrm{O}), 90.03$, 88.35, $87.75\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)$, $61.41\left(\mathrm{CH}_{2}\right), 14.23\left(\mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right.$, p.p.m.): $-30.59 ;$ IR $\left(\mathrm{KBr}, \nu, \mathrm{cm}^{-1}\right): 1995,1975$, 1920 (vs, $\mathrm{C} \equiv \mathrm{O}$), 1708 ($v s, \mathrm{C}=\mathrm{O}$).

Crystal data

$\left[\mathrm{Mo}_{2}\left(\mathrm{P}_{2}\right)(\mathrm{CO})_{4}\left(\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{2}\right)_{2}\right]$
$M_{r}=640.16$
Monoclinic, $C 2 / c$
$a=25.705$ (9) A
$b=7.912$ (4) \AA
$c=24.636$ (8) \AA
$\beta=112.742(8)^{\circ}$
$V=4621$ (3) A 3
$Z=8$

Data collection

Bruker SMART 1000 CCD area detector diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.812, T_{\text {max }}=0.874$
12842 measured reflections

Refinement

```
Refinement on \(F^{2}\)
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035\)
\(w R\left(F^{2}\right)=0.092\)
\(S=1.06\)
4733 reflections
291 parameters
```

$D_{x}=1.840 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 923 reflections
$\theta=2.7-26.3^{\circ}$
$\mu=1.27 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, red
$0.14 \times 0.12 \times 0.10 \mathrm{~mm}$

4733 independent reflections
3509 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.047$
$\theta_{\text {max }}=26.5^{\circ}$
$h=-31 \rightarrow 32$
$k=-8 \rightarrow 9$
$l=-30 \rightarrow 15$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.041 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.63$ e \AA^{-3}
$\Delta \rho_{\min }=-0.63 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

Mo1-Mo2	3.0170 (11)	P1-P2	2.089 (2)
Mo1-P1	2.5577 (14)	C1-O1	1.143 (6)
Mo1-P2	2.4700 (14)	C2-O2	1.139 (6)
Mo2-P1	2.4695 (14)	C3-O3	1.146 (6)
Mo2-P2	2.5502 (15)	C4-O4	1.150 (6)
P1-Mo1-P2	49.06 (5)	$\mathrm{P} 2-\mathrm{P} 1-\mathrm{Mo} 2$	67.44 (5)
P1-Mo1-Mo2	51.79 (3)	Mo1-P2-Mo2	73.86 (4)
$\mathrm{P} 2-\mathrm{Mo} 1-\mathrm{Mo} 2$	54.29 (4)	P1-P2-Mo1	67.66 (5)
P1-Mo2-Mo1	54.47 (3)	$\mathrm{P} 1-\mathrm{P} 2-\mathrm{Mo} 2$	63.41 (6)
P2-Mo2-Mo1	51.85 (3)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{Mo} 1$	176.3 (5)
P1-Mo2-P2	49.15 (5)	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{Mo} 1$	175.3 (4)
$\mathrm{Mo} 1-\mathrm{P} 1-\mathrm{Mo} 2$	73.73 (4)	$\mathrm{O} 3-\mathrm{C} 3-\mathrm{Mo} 2$	175.8 (5)
P2-P1-Mo1	63.28 (5)	$\mathrm{O} 4-\mathrm{C} 4-\mathrm{Mo} 2$	175.6 (5)

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C6-H6 $\cdots \mathrm{OS}^{\mathrm{i}}$	0.93	2.59	$3.477(7)$	159
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O}^{\mathrm{ii}}$	0.93	2.60	$3.441(7)$	151
C14-H14 $\cdots \mathrm{O}^{\mathrm{ii}}$	0.93	2.38	$3.262(7)$	158
Symmetry codes: (i) $x+\frac{1}{2}, y+\frac{1}{2}, z ;$ (ii) $-x, y,-z+\frac{1}{2}$				

All H atoms were placed in geometrically idealized positions and were included in a riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.93-$ $0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\left[1.5 U_{\text {eq }}(\mathrm{C})\right.$ for methyl groups $]$.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1999) ; software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank Yangzhou University for financial support of this work (grant No. D0009107).

References

Bai, J.-F., Leiner, E \& Scheer, M. (2002). Angew. Chem. Int. Eng. Ed. 41, 783786.

Bruker (1998). SMART (Version 5.051) and SAINT (Versions 5.01). Bruker AXS Inc., Madison, Wisconsin, USA.
Davies, J. E., Feeder, N., Mays, M. J., Tompkin, P. K. \& Woods, A. D. (2000). Organometallics, 19, 984-993.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Scherer, O. J., Sitzmann, H. \& Wolmershäuser, G. (1984). J. Organomet. Chem 268, C9-12.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shi, Y.-C. (2004a). J. Coord. Chem. 57, 393-400.
Shi, Y.-C. (2004b). Polyhedron, 23, 1663-1667.

[^0]: (C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

